
Extra foldr/foldl practice: Solutions

You should be able to solve problems similar to a) – f) on this handout for exams in this course. 
Questions g) – j) are beyond what we’d expect you to work out by hand for an exam, but they’re great 
practice (and show some really crazy behavior!)

a. foldr (-) 0 [8,7,6,5]
(8 – (7 – (6 – (5 – 0)))) = 2

b. foldl (-) 0 [8,7,6,5]
((((0 – 8) – 7) – 6) – 5) = -26

c. foldr (:) [] [1,2,3,4,5]
1 : (2 : (3 : (4 : (5 : [])))) = [1,2,3,4,5]

d. foldl (:) [] [1,2,3,4,5]
((((([] : 1) : 2) : 3) : 4) : 5) = error ([] : 1 doesn’t make sense)

e. foldr (/) 0 [1, 2, 3, 4, 5]
1 / (2 / (3 / (4 / (5 / 0)))) = Infinity

f. foldl (/) 0 [1, 2, 3, 4, 5]
(((((0 / 1) / 2) / 3) / 4) / 5) = 0

The following involve function composition; remember f . g x is the same as f(g(x)), where f and g are 
functions:

g. foldr ((++) . map (* 2)) [] [[1,2,3],[4,5,6],[7,8,9]] 
(This one does what you might expect)
(map (* 2) [1,2,3]) ++ ((map (* 2) [4, 5, 6]) ++ ((map (* 2) [7,8,9])
++ []))) = [2,4,6,8,10,12,14,16,18] 

h. foldl ((++) . map (* 2)) [] [[1,2,3],[4,5,6],[7,8,9]] 
(This one does something really bizarre)
(map (* 2) ((map (* 2) ((map (* 2) []) ++ [1,2,3])) ++ [4,5,6])) ++ 
[7,8,9] = [4,8,12,8,10,12,7,8,9]
The syntax for this is probably pretty confusing. If you draw a tree to represent the computation, the 
root node of every subtree is (++) . (map (* 2)) – you can think of the (map (* 2)) as 
being applied to the result of the left subtree’s computation, and then the (++) appends the right list 
to that result. This works the same way for a foldr tree, except the left subtree will just be a single list 
element.

https://wiki.haskell.org/File:Left-fold-transformation.png


i. foldr ((++) . reverse) [] ["Spyro", "the", "Dragon"]
(reverse “Spyro”) ++ ((reverse “the”) ++ ((reverse “Dragon”) ++ [])) 
= “orypSehtnogarD”

j. foldl ((++) . reverse) [] ["Spyro", "the", "Dragon"]
(reverse (reverse ((reverse []) ++ “Spyro”)) ++ “the”)) ++ “Dragon” =
“ehtSpyroDragon”


